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Mesoscopic Modeling for Continuous Spin Lattice
Systems: Model Problems and Micromagnetics
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In this paper we derive deterministic mesoscopic theories for model continuous
spin lattice systems both at equilibrium and non-equilibrium in the presence of
thermal fluctuations. The full magnetic Hamiltonian that includes singular inte-
gral (dipolar) interactions is also considered at equilibrium. The non-equilib-
rium microscopic models we consider are relaxation-type dynamics arising in
kinetic Monte Carlo or Langevin-type simulations of lattice systems. In this
context we also employ the derived mesoscopic models to study the relaxation
of such algorithms to equilibrium.
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statistical equilibrium; Monte Carlo methods; relaxation dynamics.

1. INTRODUCTION

The statistical mechanics of lattice spin systems with a continuous vec-
tor-valued order parameter provide an important modeling and compu-
tational tool capable of describing magnetic materials at equilibrium and
out-of-equilibrium states(1,2). Typically such models can include detailed,
material-dependent interactions such as anisotropy and exchange energy
between spins, the latter derived either experimentally or from quantum
mechanics calculations, as well as dipolar interactions and external mag-
netic and electric fields. Furthermore, thermal fluctuations are incorpo-
rated in the lattice models. On the other hand magnetic materials exhibit
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various types of magnetic domains, walls and magnetic vortices, at scales
much larger than the length/time scales accessible in simulations of micro-
scopic lattice spin systems. The Landau–Lifschitz model for micromagnet-
ics(3) captures such large scale features without, however, incorporating
explicitly detailed interactions and thermal fluctuations.

In relatively small scale devices and thin films, thermal fluctuations
are expected to affect the nature of the magnetic domain walls and need to
be incorporated in the mesoscopic modeling directly from the microscopic
statistical mechanics. Therefore a systematic or even rigorous derivation
of mesoscopic models that describe the system in terms of coarse vari-
ables (e.g., local average magnetization or local one-spin probability den-
sity function) would help to properly incorporate thermal fluctuations into
numerical simulations performed on much larger than microscopic scales.
In this paper we derive such a mesoscopic description for model spin lat-
tice systems both at equilibrium and non-equilibrium. The full micromag-
netics problem with singular (dipolar) interactions is also considered in the
equilibrium case. The non-equilibrium microscopic models we consider are
relaxation-type dynamics arising in Monte Carlo or Langevin-type simula-
tions of lattice systems(1). In this context we employ the mesoscopic mod-
els derived here to study the relaxation of such algorithms to equilibrium.

In Section 2.2 we study the asymptotics of the equilibrium state for a
model Hamiltonian with a Kac interaction potential by recasting the ther-
modynamic limit of the canonical Gibbs measure as a Large Deviation
problem. These results follow without significant modifications from recent
work in(4) and(5). We briefly state them and discuss their implications for
completeness and comparison to the micromagnetics problem studied in
Section 2.3, where the main new difficulty is the presence of a singular
integral operator (SIO) associated with the dipolar interaction. In this case
we derive, from the canonical Gibbs measure as a large deviation limit,
a functional over the set of local single spin probability density functions
(PDF) that includes energy interactions and entropy due to thermal fluc-
tuations. By a single spin PDF we essentially mean the probability density
of having a spin v∈S2 at the spatial location x. Furthermore, we obtain in
Section 2.4 a finite temperature free energy for the average magnetization,
i.e., the first moment of the single spin PDF. In Section 2.5 we discuss the
formation of domain walls as heteroclinic orbits of the newly derived free
energy.

In Section 3 we focus on relaxational dynamics of kinetic Monte
Carlo (KMC). We first derive an evolution equation for the local single
spin PDF and present a closed equation for the first moment of the PDF,
i.e., the average magnetization. The resulting equations are reminiscent of
kinetic Fokker–Planck–Vlasov equations (without the convection term) in
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the sense that they have a Lyapunov functional which is the functional
derived for the PDFs in the equilibrium theory. The presented analysis is
a continuation of work on mesoscopic equations derived for the dynamic
Ising model with Kac interactions (see, e.g., Refs. 6–9). In the case studied
here additional difficulty arises from the fact that spins take continuous
values, instead of discrete ones as in the Ising and Potts models. Con-
sequently we need to work mostly with an equation for the single spin
PDF rather than with the local average magnetization, which is the case in
Ising systems. In Section 3.2 we study analogous questions for the Lange-
vin dynamics. Furthermore, using spectral and relative entropy estimates
we obtain relaxation and relaxation rate results to the minimizing PDF of
the equilibrium functional obtained in Section 2. These relaxation results
in conjunction with the connection of finite-temperature free energies with
the Landau-Lifschitz model established in Section 2.5, provide a rigorous
link between two disparate types of modeling and simulation encountered
in the literature.

2. EQUILIBRIUM THEORY

2.1. Statistical Mechanics Modeling

First we summarize the statistical mechanics background of contin-
uous spin lattice systems in micromagnetics and subsequently we discuss
a model problem that retains some of the fundamental features of the
physical system. We consider a d-dimensional (d�3) periodic lattice Ln=(

1
n
Z/Z

)d ={ i
n
, i=0,1, . . . , n−1}d with spacing λ= 1

n
consisting of N=nd

sites. At each site x ∈Ln we have an order parameter σ which represents
the spin, with values on the unit sphere S2, i.e. σ(x)∈S2. The configura-
tion space is

�n={σ :σ(x)∈S2, x ∈Ln}= (S2)Ln ,

endowed with the product topology. The physics on the regular lattice
Ln ⊂ R

d is defined by means of an interaction potential between spins
σ(x), σ (x′) at two different sites x, x′ ∈Ln with values on the unit sphere
S2. The lattice Ln approximates (as n→∞) a bounded Lipschitz domain
� ⊂ R

d , where, for simplicity, we assume to be the unit d-dimensional
torus. Points on the sphere S2 are represented by unit vectors σ ∈R

3 with
the components σ i, i = 1,2,3. With a slight abuse of notation we write
σ(x)σ (x′)≡∑

i σ
i(x)σ i(x′) for the scalar product of spins at sites x, x′ ∈

Ln.
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The energy of the system (for a particular configuration σ ) is given
by the 2-body interaction Hamiltonian:

Hn(σ)=
∑

x,x′∈Ln

U
(
x, x′, σ (x), σ (x′)

)
. (1)

In the sequel the Hamiltonian remains finite as n→ ∞. We do not pur-
sue an ab initio derivation and we assume that the interaction potential
U(x− x′, σ (x), σ (x′)) consists of the following terms: U =Ue +Ud +Ua +
Uh with particular contributions reflecting different types of interactions
between magnetic moments.

2.1.1. Exchange Energy

The exchange energy is given by

Ue

(
k

n
,
l

n
, σ

(
k

n

)
, σ

(
l

n

))
=−1

2

3∑
i,j=1

J
ij
n (k− l)σ i

(
k

n

)
σ j
(
l

n

)
, (2)

where k, l ∈ {0,1, . . . , n − 1}d and with the local mean-field interaction
described by Jn(k − l)= 1

nd
J
(
k−l
n

)
, where J is a positive matrix function

whose entries are real smooth functions which depend on the distance, i.e.,
J(z)= J(|z|). The exchange energy term is often approximated by a near-
est-neighbor interaction only, but in many materials the pair-wise interac-
tion potentials are of long-range nature, see for instance(2). However, in
some cases it is also physically justified (see Ref. 7) to consider the Kac
interaction potentials: the scaling of the exchange energy involving the size
n amounts to assuming a long-range interaction on the entire macroscopic
specimen, when we focus on the n→ ∞ behavior. Thus if we want to
express (2) on the periodic lattice Ln(instead of Z

d ), by letting x= k
n

and
x′ = l

n
so that x, x′ ∈Ln, we get:

Ue(x, x
′, σ (x), σ (x′)) = − 1

2N

3∑
i,j=1

J
ij (x−x′) σ i(x)σ j (x′)

≡ − 1
2N

J(x−x′)σ (x)σ (x′) , (3)

where we recall that N =nd .



Mesoscopic Modeling for Continuous Spin Lattice Systems 351

2.1.2. Dipolar Energy

The dipolar energy (or more generally a long-range singular interac-
tion) describes interactions between different classical magnetic moments
and is given by

Ud(x−x′, σ (x), σ (x′))= 1
2N

3∑
i,j=1

Kij (x−x′)σ i(x)σ j (x′) . (4)

The kernel K defines a singular integral operator (SIO) on the space
L2(R3;R

3), which in the context of the large deviation techniques needs
to be treated in a special topology as we see in Section 2.3.

2.1.3. Anisotropy Energy

The anisotropy energy related to the crystalline structure of the mate-
rial is defined by the energy density � : S2 →R, so for x ∈Ln we have:

Ua(x, σ (x))=κ�(σ(x)) . (5)

In the sequel we often absorb the coefficient κ into the definition of �.
Note also that the underlying crystallographic lattice structure of the sys-
tem will be incorporated through this interaction energy density � rather
than by using different lattice geometries.

2.1.4. External Field Energy

In the derivation of the statistical model we omit the external field to
keep the notation simple and focus on the averaging procedure only. How-
ever, in the presence of an external magnetic field he the Hamiltonian also
involves the interaction energy

Uh(x, σ (x))=− 1
N

3∑
i=1

hie(x)σ
i(x) , (6)

where x ∈Ln.
In addition to the micromagnetics problem described above, we also

consider a model problem where the analysis is substantially easier, while
some of the essential elements of the original system are preserved. In the
model problem we retain only the term (2), i.e. the Kac potential, and
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omit the dipolar interaction term (4). For the sake of simplicity in the
notation we also omit the external field, although this term can easily be
added back into our calculations. Thus, the simplified Hamiltonian that
we will be using is:

Hn(σ)=− 1
2N

∑
x,y∈Ln

J(x−y)σ (x)σ (y)+
∑
x∈Ln

�(σ(x)) . (7)

In spite of the simplifications mentioned above, the model Hamilto-
nian retains important features from the physically realistic Hamiltonian
(1), such as exchange energy, anisotropy and a continuous spin variable.
Moreover, for the sake of simplicity we have used the new notation for the
vector product, as was introduced in formula (3).

We conclude our discussion on equilibrium models by introducing
temperature as a parameter in the system. The canonical Gibbs measure,
defined at the inverse temperature β = 1

kT
(k is the Boltzmann constant),

on the configuration space �n is:

Pn,β(dσ )= 1
Zn,β

e−βHn(σ)
∏
x∈Ln

dσ (x) , (8)

where Zn,β =∫
�n
e−βHn(σ)

∏
x∈Ln

dσ (x) denotes the partition function. The
prior distribution

∏
x∈Ln

dσ (x) models the small scale fluctuations of the
spins. We assume that spins at different lattice sites are independent, uni-
formly distributed random variables on S2. Note that we can alternatively
incorporate the anisotropy energy in the prior distribution. In this paper
we do not address the microcanonical ensemble and issues of ensemble
equivalence,(10–12), but instead focus on the canonical ensemble. Under-
standing the limiting behavior for the canonical Gibbs distribution is also
useful for analysis of Monte Carlo or Langevin-type dynamics that are
used for sampling from this Gibbs measure. We discuss the evolution to
equlibrium in more detail in Section 3.

2.2. Mesoscopic Limits at Equilibrium

We employ the theory of large deviations (see Ref. 13) to obtain an
energy functional Eβ in the continuum limit from the model spin Hamil-
tonian (7). The aim is to apply abstract large deviation type results to find
the most probable configuration of the Gibbs measure given by (8). The
large deviation techniques have been successfully applied to equilibrium
derivations of continuum limits, for instance in(14) for magnetic systems
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with Kac potentials(15–17) and in(4) for the case of 2D turbulence. In this
section, we follow the abstract framework presented in(4). The derivation
of the Large Deviation Principle (LDP) for the model Hamiltonian (7) fol-
lows without significant modifications from the recent work in(4) and(5).
We omit unnecessary generality and focus on the case of spatial dimension
d=3 only. The cases d=1,2 can be analyzed in a similar fashion once a
physically relevant Hamiltonian is formulated on the d-dimensional lattice.

We consider the space P1(�×S2) of probability measures on �×S2

with first marginal the Lebesgue measure on �. The space P1(�× S2) is
a closed subset of P(�× S2) which, when endowed with an appropriate
metric, is a complete, separable, metric space. Convergence in such metric
is equivalent to the weak convergence of measures. According to [(13) The-
orem A.5.4] we can decompose any measure µ∈P1(�×S

2) as µ(dx dv)=
dx⊗ τµ(x, dv). In particular, we define the empirical measure µN :�N →
P1(�×S2) by:

µN(σ ;dx dv)=dx⊗ τµN (σ ;x, dv) , τµN (σ ;x, dv)=
∑
s∈LN

1M(s)(x)δσ(s)(dv) .

(9)

Later in Section 3.1.1 we will use the “fully discretized” version given by:

µN(σ ;dx dv)= 1
N

∑
s∈LN

δσ(s)(dv)δs(dx) . (10)

By dx we denote the Lebesgue measure on � and by dv the invariant uni-
form measure on S2. Moreover, for each x ∈LN we denote M(x)⊂ [ 0,1)3

a cubic micro-cell with the side of length 1
N1/d containing the site x as its

lower, left vertex. The empirical measure (10) is the microscopic analogue
of the PDF of having a spin value σ(s) at the position s. Furthermore, we
introduce a coarse-grained version of (9) by:

Wr,q(dx dv)=dx⊗
2r∑
k=1

1Dr,k (x)
1
q

∑
s∈Dr,k

δσ(s)(dv) , (11)

where we have defined a coarse lattice for an integer r (such that q2r =N
for some q ∈ N) as a new covering of � by 2r macro-cells consisting of
q= N

2r micro-cells each. For subsequent use we denote the coarse lattice by
Lr,q and the corresponding space of configurations of the spins by �r,q .



354 Katsoulakis et al.

Again, (11) is an analogue of a PDF but at the larger (than the micro-
scopic) scale r.

We derive the LDP for the sequence {µN(dx dv)}N with respect to
the Gibbs measure PN,β on P1(�× S2). To derive the LDP we need to
approximate the Hamiltonian as

HN(σ)=NH̃(µN)+oN(1) , uniformly in σ , (12)

where H̃ :P1(�×S2)→R is a bounded continuous function. This follows
easily when J is a Kac potential. After a simple calculation, keeping the
higher order terms of the expansion of HN(σ), we see that H̃ is given by:

H̃ (µN)= − 1
2

∫

�×S2

∫

�×S2
J(x−x′) v v′µN(dx dv)µN(dx′ dv′)

+
∫

�×S2
�(v)µN(dx dv) .

We also denote the prior distribution
∏
x∈LN

dσ(x) by d
N .
The relative entropy R(µ| ν) of µ with respect to ν, where µ and ν

are measures in P(�×S2) is defined by:

R(µ | ν)=
{∫

�×S2

(
log dµ

dν

)
dµ, if µ<<ν ,

∞, otherwise .

By Sanov’s Theorem (see Ref. 13) and using the auxiliary coarse-grained mea-
sure (11) (see Refs. 18,5) we derive the LDP for µN with respect to 
N on
P1(�× S2) (i.e. in the absence of interactions) with rate function R(· |λ×ρ)
(where λ is the Lebesgue measure on � and ρ is an invariant measure on S2).
This can be stated rigorously: for every Borel subset F ⊂P1(�×S2),

−R(F ◦)� lim inf
N→∞

1
N

log
N {µN ∈F ◦} and lim sup
N→∞

1
N

log
N {µN ∈ F̄ }�−R(F̄ ),

where R(F )= infµ∈F R(µ|λ× ρ) and F ◦, F̄ denote the interior and clo-
sure of F respectively. Note that if µ is absolutely continuous with
respect to λ(dx) × ρ(dv) ≡ dx dv, then the relative entropy is given
by: R(µ |dx dv) = ∫

�×S2 f (x, v) logf (x, v) dxdv, for dµ=f dxdv . Now
we are ready to present the main result which follows from the theorems,
proved in(4):
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Theorem 2.1. The sequence {µN(dx dv)}N with respect to the Gibbs
measures {PN,β}N satisfies an LDP on P1(�×S

2) with the rate functional

Iβ [µ]=Eβ [µ]− inf
ν∈P1(�×S2)

Eβ [ν] , (13)

where Eβ [µ]=βH̃ (µ)+R(µ |λ×ρ) .
In particular,

(i) the asymptotic behavior of the partition function ZN,β is given by

lim
N→∞

1
N

logZN,β =− inf
µ∈P1(�×S2)

Eβ [µ] .

(ii) For every continuous, bounded function  :P1(�×S
2)→R

lim
N→∞

1
N

log
∫

�N

e−(µ
N) PN,β(dσ )=− inf

µ∈P1(�×S2)

{
(µ)+ Iβ [µ]

}
.

(iii) Let Eβ := {µ ∈ P1(�× S2) : Iβ(µ)= 0}. Then Eβ is a non-empty
compact subset of P1(� × S2), and if B is a Borel subset of P1(� ×
S2) whose closure B̄ has empty intersection with Eβ then Iβ(B̄) :=
infµ∈B̄ Iβ(µ)>0 and thus for some C<∞:

PN,β(µ
N ∈B)�C e−Iβ (B̄)→0 , as N→∞.

Proof. We present the main calculation for the sake of clarity. For
(i) we have:

lim
N→∞

1
N

logZN,β = lim
N→∞

1
N

log
∫

�N

e−βNH̃(µ
N )

∏
x∈LN

dσ(x)

= lim
N→∞

1
N

log
∫

P1(�×S2)

e−βNH̃(µ)
N
(
{σ : µN ∈dµ}

)

= sup
µ∈P1(�×S2)

{−βH̃ (µ)−R(µ |λ×ρ)} , (14)

where the first equality is due to (12) and the second is a change of the
variable of integration. The last equality is due to the fact that J is smooth
and thus H̃ is a bounded continuous function (see Theorem 1.2.1 in Ref.
13) and the LDP for µN with respect to the prior distribution 
N .



356 Katsoulakis et al.

The proof of (ii) is similar since  is a bounded continuous function.
For (iii) first note that by Prokhorov’s theorem P(�×S2) is compact since
both � and S2 are compact and thus P1(�×S

2) is also a compact space
as a closed subset of a compact space. Hence, since Iβ is a rate function
as a lower semicontinuous mapping of the compact space P1(�×S

2) into
[0,1), it assumes its minimum of 0 on P1(�× S

2) and thus Eβ is non-
empty. Moreover, if B̄ has empty intersection with Eβ , then Iβ(B̄)>0 since
Iβ is a rate function and Iβ(µ)>0 for every µ∈ B̄.

Thus, the LDP for the Gibbs measure, as N → ∞, can be formally
written as:

PN,β(µ
N =µ)≈ e−N [βH̃ (µ)+R(µ|λ×ρ)−infν {βH̃ (ν)+R(ν|λ×ρ)}] . (15)

Remark 2.1. The expression (15) is interpreted as follows: the most
probable configuration µ of the Gibbs measure is the minimizer of
βH̃ (µ)+R(µ |λ×ρ), yielding the large scale structure (at the scale of the
domain �×S

2) at equilibrium. This leads to the identification of Eβ with
the set of equilibrium macrostates. As we show below, this minimizer turns
out to be the probability density (28) derived for the case where we have
included the micromagnetic interactions. Note that βH̃ (µ)+R(µ |λ×ρ) is
finite if and only if the measure µ has a density f , in which case we define
the energy functional by

Eβ [f ] = −1
2

∫

�×S2

∫

�×S2
J(x−x′) v v′ f (x, v)f (x′, v′) dx dv dx′ dv′

+1
β

∫

�×S2
f (x, v) logf (x, v) dx dv+

∫

�×S2
�(v)f (x, v) dx dv .(16)

Finally, the formal expression (15) captures the microscopic spatial ran-
dom fluctuations of the empirical measure µN as a function of N (i.e., the
total number of spins in the specimen), around the most probable macro-
state given by the minimizer of (16).

2.3. Dipolar Interactions in Micromagnetic Hamiltonians

To study the properties of the micromagnetic model we have to
include the additional term Ud in the interaction potential U(x−x′, σ (x),
σ (x′)), x, x′ ∈ LN , given by (4) which describes a non-local, long-range
interaction between different classical magnetic moments. Then the corre-
sponding Hamiltonian, neglecting all other contributions (which are easy
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to handle as in the previous section), is given by:

HN(σ)= 1
2N

∑
x,y∈LN

K(x−y)σ (x)σ (y) .

The kernel K(z) is smooth except at the origin and is given by:

Kij (z) = − 1
4π |z|3

(
δij −3

zizj

|z|2
)
, z∈R

3, or equivalently,

Kij (z) = ∇zi∇zj
(

1
|z|
)
. (17)

Moreover, K defines a singular integral operator T :L2(R3,R3) → L2

(R3,R3) given by:

[T u(x)]i =
∫

R3

3∑
j=1

Kij (x−y)uj (y)dy, i=1,2,3 .

While the derivation of the LDP in the previous section has used
standard results, a rigorous treatment of the Hamiltonian based on the
SIO is more involved. In this paper we present only partial results derived
for a specific regularization of the lattice Hamiltonian. We consider a new
regularized interaction kernel at the level r of the coarse-graining:

K̄r,q(x, y)=
2r∑

k,k′=1

1Dr,k (x)1Dr,k′ (y)
1

|Dr,k|2
∫

Dr,k

∫

Dr,k′
K(|x′ −y′|) dy′ dx′ .

(18)

We denote the corresponding operator by T̄ r,q . Using the new kernel we
redefine the original Hamiltonian by:

H̄r,q (σ ) :=〈T̄ r,qmN,mN 〉=
2r∑

k,k′=1

1
q2

∑
s∈Dr,k

σ (s)
∑

s′∈Dr,k′
σ(s ′)

∫

Dr,k

∫

Dr,k′
K(|x ′ −y ′|) dy ′ dx ′ ,

(19)

where σ ∈ �r,q and mN(x) =∑
s∈LN

σ (s)1M(s)(x). Before presenting the
corresponding LDP Theorem, we observe that as in the proof of Theo-
rem 2.1, in order to make the third equality in (14) valid, we need that
the limiting operator is a bounded continuous functional on P1(�× S

2).
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This is not true for the weak topology used in(4) since T is an SIO. This
problem can be resolved by considering a stronger topology introduced
in(5), where the LDP for the case where there are no interactions was first
proved. More precisely, we consider the set

P1,p(�×S
2)=

{
ν ∈P1(�×S

2) : x →
∫

S2
v τν(x, dv)∈Lp(�,dx)

}
.

Then let T1,p be the strongest topology on P1,p(�×S
2) that makes con-

tinuous all maps ν → (
x → ∫

S2v τν(x, dv)
) ∈Lp(�,dx). The open sets of

the topology under consideration are:

Oρ,ε =
{
ν ∈P1,p(�×S

2) :
∫

�

∣∣∣∣
∫

S2
v τν(x, dv)−

∫

S2
v τρ(x, dv)

∣∣∣∣
p

dx <ε

}
,

for every ρ ∈ P1,p(� × S
2) and ε > 0. Then for p = 2, we have that:

if Wr,q

T1,2→ ω then W̄r,q
L2

→ ω̄ and consequently T W̄r,q
L2

→ T ω̄, since T is
continuous in the L2-norm (see Ref. 19). Recall that W̄r,q(x)=

∑2r
k=1 1Dr,k

(x) 1
q

∑
s∈Dr,k σ (s) and ω̄= ∫

S2 vτω(x, dv). The Gibbs measure P̄r,q,β that

corresponds to the new Hamiltonian (19) is given by:

P̄r,q,β(dσ )= 1

Z̄r,q,β
e−βH̄r,q (σ )

∏
x∈Lr,q

dσ (x) , (20)

where Z̄r,q,β = ∫
�r,q

e−βH̄r,q (σ )
∏
x∈Lr,q

dσ (x) is the new partition function.
Using the stronger topology introduced above we can derive the LDP
stated in the following theorem:

Theorem 2.2. The sequence {Wr,q(dx dv)}r,q with respect to the
scaled Gibbs measures {P̄r,q,q2rβ}r,q satisfies a LDP in the double limit
(q→∞ and r→∞) on P1,2(�×S

2) with the rate functional

Īβ [ω]= Ēβ [ω]− inf
ν∈P1,2(�×S2)

Ēβ [ν] , (21)

where Ēβ [ω] = β〈T ω,ω〉 + R(ω |λ× ρ) , and we define T ω := T ω̄ for the
corresponding average ω̄ of ω∈P1,2(�×S

2). In particular,
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(i) the asymptotic behavior of the partition function Z̄r,q,q2rβ is given
by

lim
r→∞ lim

q→∞
1
q2r

log Z̄r,q,q2rβ =− inf
ω∈P1,2(�×S2)

Ēβ [ω] .

(ii) For every continuous, bounded (with respect to the new topology
T1,2) functional :P1,2(�×S

2)→R

lim
r→∞ lim

q→∞
1
q2r

log
∫

�r,q

e−q2rβ(Wr,q ) dP̄r,q,q2rβ

=− inf
ω∈P1,2(�×S2)

{
(ω)+ Īβ [ω]

}
.

Proof. We first observe that

H̄r,q(σ ) :=〈T̄ r,qmN,mN 〉=〈T W̄r,q , W̄r,q〉 . (22)

From the above calculation and the definition of P̄r,q we observe that for
(18) we have:

lim
r→∞ lim

q→∞
1
q2r

log Z̄r,q,q2r β
(22)= lim

r→∞ lim
q→∞

1
q2r

log
∫

�r,q

e−q2r β〈TWr,q ,Wr,q 〉
∏
x∈Lr,q

dσ (x)

= lim
r→∞ lim

q→∞
1
q2r

log
∫

P1,2(�×S2)

e−q2r β〈T ω,ω〉
r,q

({σ : Wr,q ∈dω})

= sup
ω∈P1,2(�×S2)

{−β〈T ω,ω〉−R(ω |λ×ρ)} . (23)

The last equality is true if we assume the stronger topology intro-
duced above. Part (ii) can be proved similarly. Such double limit LDP’s
have been first introduced in(18) for the weak topology of P1(�×S

2).

In order to treat the SIO without regularization one needs to
establish, in addition to the new topology introduced above, convergence
properties of the discretized SIO in the presence of fluctuations. Rigorous
treatment in this case is related to the work in(20) and is presented in(21).
The main difficulty is due to the fact that for the microscopic sequence mN

we cannot use the stronger topology introduced above. This means that
in order to study the non-regularized SIO appearing in the micromagnetic
applications we have to account for all energy correction terms that come
as a result of the different scales of oscillations on the lattice.
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2.4. Free Energy and Variational Principle in Micromagnetics

In Section 2.2 we showed that the functional (16) is the rate func-
tional for the measure-valued process µN(dx dv). In this section we derive
the corresponding free energy Fβ of the system for the average mag-
netization which is the rate functional of the measure valued process∑2r
k=1 1Dr,k (x)

1
q

∑
s∈Dr,k σ (s). We also see that the infimum of the free

energy functional constrained on the magnetization m coincides with the
infimum of the energy functional Eβ . Moreover, we prove that this infi-
mum is attained at the density M(x, v) which represents the equilibrium
macrostate of the microscopic system. Note also that in this section we
include both the smooth potential and the singular integral interaction
term as obtained in Theorem 2.2.

Theorem 2.3. Let

Fβ [m]=−1
2

∫

�

J∗m ·mdx+ 1
2

∫

�

|∇u|2 dx+
∫

�

a∗
β(m)dx− 1

β
logZ� ,

(24)

where the function u solves (in the weak sense)

�u=div(1�m) , in R
3 . (25)

Moreover,

a∗
β(m)= sup

p∈Rd

{m ·p−aβ(p)} (26)

is the Legendre–Fenchel transform of the function

aβ(p)= 1
β

log
∫

S2
eβv·pρ̃(dv) , (27)

where:

ρ̃(dv)= 1
Z�

e−β�(v)dv, Z� =
∫

S2
e−β�(v) dv .

Then
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(i)

Fβ [m]= inf
µ∈P1,2(�×S2)

{
Eβ [µ] |m :m(x)=

∫

S2
v τµ(x, dv)

}

and

inf
{
Eβ [f ] |f (x, v) dxdv∈P1,2(�×S

2)
}

= inf
{
Fβ [m] |m∈L2(�,R3)

}
.

(ii) The measure-valued process
∑2r
k=1 1Dr,k (x)

1
q

∑
s∈Dr,k σ (s) satisfies

a double limit LDP (see Ref. 5, Corollary 2.5) with the rate functional Fβ
in L2(�;R

3).

(iii) The infimum is attained when f (x, v) equals to:

M(x, v)= 1
Zβ(x)

e−β[�(v)+v(∇u(x)−J∗m(x))] , and m(x)=
∫

S2
v f (x, v)dv ,

(28)

where u,m are related by (25).

Proof. (i) We first observe that

inf
{
Eβ [f ] |f dxdv∈P1,2(�×S

2)
}

= inf
m∈L2(�,Rd )

inf
{
Eβ [f ] |f dxdv∈P1,2(�×S

2) ,

∫

S2
vf (x, v) dv=m(x)

}
.

Next we have to show that the inner infimum on the right hand side is
equal to Fβ [m]. The solution operator for Poisson’s Eq. (25) and the gra-
dient of u yield the SIO ∇�−1div which has the kernel K(x− y) and we
can rewrite the energy Eβ in the following form

Eβ [f ] = 1
2

∫

�

(K−J)∗m ·mdx+
∫

�×S2
f (x, v)�(v) dvdx

+ 1
β

∫

�×S2
f (x, v) logf (x, v) dv dx

= 1
2

∫

�

(K−J)∗m ·mdx+ 1
β

∫

�×S2
f (x, v) log

f (x, v)

N(v)
dvdx− 1

β
logZ� ,

where we denote

N(v)= 1
Z�

e−β�(v) , Z� =
∫

S2
e−β�(v) dv . (29)
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We consider the parametrized probability measure f (x, v) dv and write the
relative entropy

R(f dv |Ndv)≡
∫

S2
f (x, v) log

f (x, v)

N(v)
dv .

Using the relative entropy we can rewrite the energy Eβ as

Eβ [f ]= 1
2

∫

�

(K −J)∗m ·mdx+ 1
β

∫

�

R(f |N)dx− 1
β

logZ� .

Thus

inf
{
Eβ [f ] |f dxdv∈P1,2(�×S

2),

∫

S2
vf (x, v) dv=m(x)

}

=1
2

∫

�

(K −J)∗m ·mdx+ inf
f

1
β

∫

�

R(f |N)dx− 1
β

logZ� .

Since the mapping f →R(f |N) is convex and non-negative we have:

inf
f

1
β

∫

�

R(f |N)dx= 1
β

∫

�

inf
f

R(f |N)dx .

Next, using Lemma 3.3.3 from (13), we obtain

inf
{
R(f |N) |f dv∈P(S2) ,

∫

S2
vf (x, v) dv=m(x)

}
=a∗

β(m(x)) ,

where P(S2) denotes the probability measures on S2. Assertion (i) of the
proposition then follows.

(ii) We apply the contraction principle (see Ref. 13, p. 18) by setting
G :P1,2(�×S2)→L2(�) to be G(µ)=∫

S2 v τµ(x, dv) . Since the functional
G is continuous we obtain, from the contraction principle, that the rate
function of

2r∑
k=1

1Dr,k (x)
1
q

∑
s∈Dr,k

σ (s)=
∫

S2
v τWr,q (x, dv)

is given in terms of the rate function Eβ [f ] of Wr,q(dx dv), i.e., Fβ [m] =
infµ∈P1,2(�×S2)

{
Eβ [µ] |G(µ)=m}, which together with (i) yields (24).
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(iii) To check that the infimum is attained we first observe that Eβ [f ]
is a lower-semicontinuous function of f . This is true since due to the
stronger topology (for P1,2(�×S

2)) introduced in the previous section, the
mapping f → ∫

�
(K − J) ∗m ·mdx, with m(x)= ∫

S2 v f (x, v)dv is continu-
ous and a∗

β is lower semicontinuous being a convex function of m. Hence
there exists a minimum. By calculations similar to the ones in Ref. 22 we
derive the Euler–Lagrange equations that correspond to this minimization
problem and we find that the infimum is attained when f (x, v) equals to
the Maxwellian density (28).

2.5. Connections with the Landau–Lifschitz Theory

A natural question is how the presented derivation relates to the
Landau–Lifschitz theory(23–25) widely used in micromagnetic modeling.
The equilibrium states in the Landau–Lifschitz theory are described by
minimizers of the energy functional

FLL[m]=
∫

�

A

2
|∇m|2 dx+

∫

Rd

1
2
|∇u|2 dx+

∫

�

�̃(m)dx−
∫

�

hemdx , (30)

where A is a material-dependent constant and �̃ a function on S2 describ-
ing the crystalline anisotropy. The magnetization field m in FLL is subject
to the non-convex constraint |m|=1. The micromagnetics theory assumes
that the macroscopic magnetization field m(x) is slowly varying in space
and has constant modulus |m(x)|=ms(T ) throughout the specimen. Con-
sequently at a constant temperature T the field can be normalized to the
unit vector and the energy functional (30) is an accepted starting point of
the static micromagnetic modeling.

The equilibrium theory discussed in the previous sections presents a
rigorous derivation of a local mean-field approximation that explicitly con-
nects microscopic interactions with parameters in the continuum model.
The difference when compared to the Landau–Lifschitz theory is caused
by the presence of the thermal fluctuations and the averaged nature of
the magnetization field m(x)= ∫

S2 v f (x, v) dv manifested in the relaxed
constraint |m(x)| � 1. However, it is not difficult, at least on a formal
level, to show a connection with the Landau–Lifschitz theory. Assuming
that m(x) is sufficiently regular and expanding the convolution J ∗m in
the free energy (24), J ∗m=J0m+J2�m+ . . . , where J0 = ∫

�
J(r) dr, J2 =

1/2
∫
�

|r|2J(r) dr, and substituting into (24) we obtain

F̃β [m]=
∫

�

J2

2
|∇m|2 dx+

∫

Rd

1
2
|∇u|2 dx+

∫

�

(
a∗
β(m)−

J0

2
|m|2

)
dx−

∫

�

hemdx,

(31)
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in the case when we also include the external field term. In this way the
interaction defined on the microscopic level is related explicitly to the con-
stants in the macroscopic model. Through the definitions (26) and (27)
we also obtain the dependence on the local anisotropy energy ψβ(m)≡
a∗
β(m)− J0

2 |m|2. Although the function aβ(p) is difficult to be found in a
closed form some properties of the function follow directly from the defi-
nition of the Legendre–Fenchel transform. Direct calculation implies that
since |∂paβ(p)| � 1 we have a∗

β(m)= ∞ for |m|> 1 and consequently the
energy F̃β (or Fβ ) is minimized subject to the constraint |m|�1.

The following example demonstrates some features of the model for
a specific choice of the lattice anisotropy �(σ).

Example (Uniaxial anisotropy). We define (θ, φ) to be the standard
spherical coordinates on S2. The preferred direction (the easy axis) in the
uniaxial anisotropy is identified with the coordinate z-axis. The simplest
form of the lattice anisotropy is then given by

�(v)≡�(θ,φ)=−κ cos2 θ ,

where κ is a material dependent constant. From (27) we have

aβ(p)= 1
β

log
∫ 2π

0

∫ π

0
eβ(κ cos2 θ+p|| cos θ+p⊥ sin θ cosφ) sin θ

dθ dφ

2π
, (32)

where p|| = |p| cos θp (projection of p on the easy axis) and p⊥ =|p| sin θp,
with (θp, φp, |p|) being spherical coordinates of the vector p. In general,
the integral over S2 needs to be evaluated numerically. However, the form
of the integral allows us to obtain closed formulae at certain asymptotic
regimes. The calculations of asymptotics follow standard procedures. One
would expect that in the asymptotic regime κ → ∞ the system exhibits
behavior of the Ising model as the spins tend to take only two values.
Indeed, as κ→∞ we obtain asymptotic expansion

aβ(p)= 1
β

log
(
eβκ

κβ
coshβp||

)
+ 1

4β2κ

[
(2+β2p2

⊥)−2βp|| tanhβp||
]
+O(κ−2) ,

and the leading term gives aβ(p)= 1
β

coshβp|| . From (26) the direct calcu-
lation yields

a∗
β(m)=

{+∞, if m⊥ �=0
1
β

(
1+m||

2 log
(

1+m||
2

)
+ 1−m||

2 log
(

1−m||
2

))
, if m⊥ =0.

(33)
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Hence the minimizing magnetization m has a non-zero component only in
the direction of the easy axis, i.e., m||. Furthermore, the local free energy
in this limit is defined as

ψβ(m||)= 1
β

(
1+m||

2
log

(
1+m||

2

)
+ 1−m||

2
log

(
1−m||

2

))
− 1

2
J0m

2
|| .

which is identical to the Ising case with Kac interactions (see Ref. 9). In
general, the functions a∗

β(m) and ψβ(m) will depend on both components
m|| and m⊥ and they have to be evaluated numerically. The function aβ(p)
is computed by numerical quadrature and the Legendre–Fenchel trans-
form is performed on the discrete approximation of aβ(p). This is done
by using fast Legendre–Fenchel algorithm, see Ref. 26. The fast numerical
evaluation of ψβ allows us to use the implicit definition of the energy in
standard minimization algorithms or for numerical solution of non-linear
equations. We present only two applications of such numerical approach:
(a) investigation of the free energy surface, (b) approximation of a one-
dimensional domain wall in an infinite domain.

Figure 1 depicts the behavior of the local free energy ψβ(m) and its
dependence on the inverse temperature β. The free energy can be con-
veniently parametrized by the modulus |m| and the angle θ (the angle
between the easy axis and the vector m). The numerical approximation
of ψβ allows us to find the value of the critical temperature. The critical
inverse temperature βc represents the Curie point of the phase transition
between paramagnetic and ferromagnetic phase. In other words the free

Fig. 1. The free energy surface ψβ(|m|, θ) and its dependence on the inverse temperature β.
Model parameters: κ = 3.0, J0 = 1.0. The solid line depicts the phase transition between fer-
romagnetic and paramagnetic behavior, the dotted line is the critical case for the mean-field
approximation of the Ising model with the same Kac potential (βIc J0 =1).
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energy is convex for β<βc, or equivalently I −J0∂
2
ppaβ(0) is positive defi-

nite. The solid line indicates the position of a phase transition point at the
temperature βc where the function changes from non-convex to convex.

Existence of magnetic domains and different types of magnetic walls
in the Landau–Lifschitz theory is attributed to the competition of different
contributions in the free energy and to the non-convex constraint |m|=1.
Due to the thermal agitation incorporated in the finite-temperature free
energy Fβ (or F̃β ) the norm |m| also fluctuates. Although for low temper-
atures |m| can be close to the unit sphere, in general, we have the con-
vex constraint |m| � 1. The brief discussion above of the free energy ψβ
suggests that the finite-temperature model allows for domain formation
whenever the exchange energy is strong enough compared to the temper-
ature. A first test in this direction is the existence of non-zero constant
states as minimizers of Fβ in the spatial dimension d=1.

In the absence of an external field he, the condition that
I − J0∂

2
ppaβ(0) is positive definite guarantees that m≡ 0 and u≡ 0 is the

minimizer of Fβ (as well as F̃β ) implying a uniform state, i.e., no domain
formation. In this case the probability distribution of spins is x-indepen-
dent, yielding the equilibrium Gibbs distribution N(v).

When I −J0∂
2
ppaβ(0) is not positive definite, then for a suitable domain�

and anisotropy, there exist non-trivial constant state solutions {mkβ �=0, k=±}
andu≡0 to the Lagrange–Euler equation for the energy F̃β . For instance, in the
special case of a hard (κ→∞) uniaxial material we have the usual Ising-type
model where the condition for multiple steady states reduces to βIJ0> 1,(27).
This condition follows from the explicit form of aβ in the asymptotic limit
κ→∞. Notice in Fig. 1 that there can be a significant difference between crit-
ical temperatures for Ising and Heisenberg models.

In the general case, the vectors mkβ solve the algebraic equation

J0m= ∂pa∗
β(m) , (34)

and have lower energy than the state m≡0, u≡0. Since the magnetization
m in our model is computed by averaging over the thermal fluctuations
of spins the magnetic domains are identified with regions where |m(x)|≈
|mkβ |�1. The structure of separating domain walls can be explored numer-
ically with relative ease since the constraint |m|= 1 is absent in the finite
temperature case. Indeed, a one-dimensional standing wave of F̃β along
the easy axis in a one-dimensional uniaxial material of infinite length is
the minimizer of the one-dimensional functional (when he=0),

¯̃
Fβ [m]=

∫ ∞

−∞

[
J2

2
|mx |2 +a∗

β(m)−
J0

2
|m|2 + 1

2
m2

1

]
dx , (35)
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Fig. 2. Magnetic domains and domain walls in one-dimensional infinitely long chain (with
κ = 3.0). The solid line represents an out-plane wall (both components m2,m3 change inside
the wall), while the dotted line depicts an in-plane wall (only the component m3, parallel to
the easy axis, changes), that represents a metastable state. The dashed line shows the wall for
mean-field approximation of the Ising model with the same Kac potential and at the same
β, i.e., the case κ→∞. The Ising wall is given explicitly as m3(x)=mβ tanh(βmβx). The two
solutions are also plotted on the energy surface of the free energy ψβ .

where m||(±∞)=±mkβ , m⊥(±∞)=m1(±∞)=0. The existence of such het-
eroclinic connections follows directly from the results on Hamiltonian sys-
tems(28), since we only impose |m| � 1. Using numerically computed free
energies ψβ we computed the minimizers of (35) by direct minimization
(using the truncated Newton method in the minimization algorithm), see
Fig. 2. We observe two types of domain walls even in the one-dimensional
case. The in-plane wall is observed when the energy ψβ has a local mini-
mizer at |m|= 0. This wall represents a metastable state since in the case
of one-dimensional domain � the global minimisers of ψβ below the criti-
cal βc are at states with |m| �=0. Note that in higher dimensions the energy
balance will involve the shape of the domain through the magnetic poten-
tial u. Consequently, the phase diagram and existence of different phases
will also depend on the domain � and both in-plane and out-plane phases
may appear as stable.

3. NON-EQUILIBRIUM

Monte Carlo simulations for lattice spin systems are used primarily
as a means for sampling from the canonical Gibbs measure(1), as well
as in some cases as a caricature of real non-equilibrium dynamics,(29,30).
These algorithms are set up as ergodic Markov jump processes, which
have the canonical Gibbs measure (8) as their invariant measure, see for
instance(31). Using the same considerations as in the Monte Carlo jump
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dynamics, we can also formulate a system of stochastic differential equa-
tions which are of Langevin-type and define relaxation dynamics converg-
ing, as t → ∞, to the canonical Gibbs measure (8). In the sequel we
restrict our attention to the model Hamiltonian (7). We first derive an evo-
lution equation for the local single spin PDF and present a closed equa-
tion for the first spin moment of the PDF, i.e., the average magnetization.
The resulting equations are reminiscent of kinetic Fokker–Planck–Vlasov
equations (without the convection term) in the sense that they have a
Lyapunov functional which is the functional derived for the PDFs in the
equilibrium theory. We also study analogous questions for the Langevin
dynamics. Furthermore, using spectral and relative entropy estimates we
obtain relaxation, and relaxation rate results to the minimizing PDF of
the equilibrium functional obtained in Section 2.

3.1. Kinetic Monte Carlo Dynamics

The jump process σ can be constructed as follows: suppose that at
time t the configuration is σt , then the probability that in the time interval
[t, t +�t ] the spin at the site x ∈Ln will spontaneously change from σ(x)

to an arbitrary value v∈S2 is cn(x, σ ;v)�t+O((�t)2) , where cn(x, σ ;v)
is the jump rate of the process. We also denote by σx,v the resulting new
configuration. The dynamics need to be selected so that they guarantee
convergence of an arbitrary initial measure to the canonical Gibbs mea-
sure. A sufficient condition is known as Detailed Balance (DB):

cn(x, σ ;v)e−βHn(σ)= cn(x, σ x,v;σ(x))e−βHn(σx,v) . (36)

Note that cn(x, σ ;v) is the rate of converting σ(x) to a prescribed spin
v and cn(x, σ x,v;σ(x)) the rate of converting v back to σ(x). Metropolis-
type dynamics satisfying (36) are of the type

cn(x, σ ;v)=G(β�x,vHn(σ )) , with �x,vHn(σ )=Hn(σx,v)−Hn(σ) .
(37)

where G is a continuous function which satisfies the condition: G(r)=
G(−r)e−r ,∀r ∈ R. Typical choices of G are G(r)= 1/1+ er ,G(r)= e−r/2
and G(r) = e−r+; the first case is known under the name of Glauber
dynamics and the third are the Metropolis dynamics. The generator of the
process is given by

Lnf (σ)=
∫

S2
dv

∑
x∈Ln

cn(x, σ ;v) (f (σx,v)−f (σ)) ,
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where f is any real, bounded test function on �n and

σx,v(y)=
{
v, if y=x
σ(y), if y �=x .

Another interesting case, that will not be studied in the present paper, is
to consider the conservative exchange-spin dynamics (see Ref. 32 for the
Ising case).

3.1.1. Derivation of a Kinetic Equation

We consider as our observable the empirical measure (probability
measure on � × S

2) given by (10). Note that there is a one-to-one
correspondence between configurations σ and the empirical measures
µnt (σ ;dx dv). In particular, µnt inherits the Markov property from σ . Then
considering a test function g :�×S

2 →R in some class of functions (to be
specified later) we have:

f (σ)=〈µnt , g〉= 1
N

∑
x∈Ln

g(x, σ (x)) ,

where 〈·, ·〉 represents the usual dual pairing: 〈µ,f 〉= ∫ f (x) dµ(x) for f
appropriately chosen and again N =nd . For later use we calculate:

f (σx,v)−f (σ) = 1
N

∑
y∈Ln

(
g(y, σ x,v(y))−g(y, σ (y)))

= 1
N
(g(x, v)−g(x, σ (x))) . (38)

We introduce the path space in which we analyze the dynamics: note
that {t →µnt } ∈D([0, T ],P), where P = P(�× S

2) is the space of proba-
bility measures on �×S

2 endowed with the weak topology and D is the
space of right continuous functions with left limits (this space follows from
the fact that µ exhibits jumps). For a more detailed description of these
spaces we refer to Ref. 33. We define for every n� 1 a probability mea-
sure on D([0, T ],P) denoted by Qn corresponding to the Markov process
µnt . Our goal is to prove that, for each fixed time t , the empirical measure
µnt (dx du) converges (as n→ ∞) in probability to f (x, u, t) dx du, where
f (x, u, t) is a solution of an equation to be yet found, with some initial
condition f0(x, u). It suffices to show convergence in distribution of the
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process µnt to a probability measure which is concentrated on a determin-
istic path (namely f (x, u, t)dxdu), since by standard results (see Ref. 34)
convergence in distribution to a deterministic weakly continuous trajectory
implies convergence in probability at any fixed time 0 � t � T . Moreover,
realizing that a deterministic trajectory can be interpreted as the support
of a Dirac probability measure on D([0, T ],P), the problem reduces to
showing the convergence of the probability measure Qn to the Dirac mea-
sure concentrated on the solution of the equation that we are looking for.
We have the theorem:

Theorem 3.1. Let f0 :�× S
2 → [0,1] be an initial density profile,

where �≡ [0,1)d , and let µn be a sequence of probability measures on the
configuration space �n, associated to the initial profile f0, in the following
sense:

lim sup
n→∞

µn




∣∣∣∣∣∣
1
N

∑
x∈Ln

g(x, σn(x))−
∫
g(x, u) f0(x, u) dx du

∣∣∣∣∣∣
>δ


=0 , (39)

for every continuous function g :�× S
2 → R and every δ > 0. Then, for

every t > 0, the sequence of random measures µnt (dy du) given in (10)
converges in probability to the absolutely continuous (with respect to the
Lebesgue measure) measure f (y, u, t) dy du, whose density is a solution of
the following equation:

d

dt
f (y, u, t) =

∫

S2
S(v, u;y)f (y, v, t) dv−f (y, u, t)

∫

S2
S(u, v;y) dv

(40)

f (y, u,0) = f0(y, u) , (41)

where S(u, v;y) = G [β ((u−v) ·J∗m(y, t)+�(v)−�(u))] ,m(y, t) =∫
S2 uf (u, y, t) du and J is a smooth potential.

Remark 3.1. Recalling (36) we get the relation:

S(u, v;y)M(y,u, t)=S(v, u;y)M(y, v, t) , (42)

where M is the Maxwellian defined via (28) without the dipolar term and
for time-dependent magnetization m as in the statement of Theorem 3.1.
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Using this relation we can rewrite Eq. (40) in the BGK form (see Ref. 35
for BGK-type equations in kinetic theory):

d

dt
f (y, v, t)=

∫

S2
duS(v, u;y)M(y, v, t)

[
f (y, u, t)

M(y,u, t)
− f (y, v, t)

M(y, v, t)

]
.

(43)

Proof. To start we need to establish the martingale problem and
derive some estimates on the martingale term: under Qn, for every test
function g on �×S

2, 〈µnt , g〉 verify the identity (martingale problem):

〈µnt , g〉=〈µn0, g〉+
∫ t

0
Ln〈µns , g〉ds+Mg,n

t ,

where M
g,n
t are martingales with respect to the natural filtration Ft =

σ(σns , s� t). From (38) we have:

Ln〈µns , g〉=
∫

S2
dv

∑
x∈Ln

cn(x, σ ;v) 1
N
(g(x, v)−g(x, σ (x)))=: I − II ,

where by (37) we obtain:

cn(x, σ ;v)=G
(
β(σ(x)−v) 1

N

∑
y

J(x−y)σ (y)+β�(v)−β�(σ(x))
)
.

In particular,

I =
∫

S2
dv

∫

�×S2
g(y, v)Gn[u, v;y]µns (dy du)

= 1
N

∫

S2
dv

∑
x∈Ln

g(x, v)Gn[σ(x), v;x] ,

I I =
∫

S2
dv

∫

�×S2
g(y, u)Gn[u, v;y]µns (dy du)

= 1
N

∫

S2
dv

∑
x∈Ln

g(x, σ (x))Gn[σ(x), v;x] .
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Thus the martingale problem becomes:

〈µnt , g〉 = 〈µn0, g〉+
∫ t

0
ds

{∫

S2
dv

∫

�×S2
g(y, v)Gn[u, v;y]µns (dy du)

−
∫

S2
dv

∫

�×S2
g(y, u)Gn[u, v;y]µns (dy du)

}
+Mg,n

t . (44)

Next we derive some estimates on the martingale term that we will
use in the sequel of the proof. Consider the processes:

B
g,n
t =Ln〈µnt , g〉2 −2〈µnt , g〉Ln〈µnt , g〉 , N

g,n
t = (Mg,n

t )2 −
∫ t

0
B
g,n
s ds .

It is easy to show that Ng,n
t is a new martingale (see, for example, Ref. 33

Lemma 5.1, Appendix 1). Then the quadratic variation of Mg,n
t is given

by:

〈Mg,n
t 〉=

∫ t

0

[
Ln〈µns , g〉2 −2〈µns , g〉Ln〈µns , g〉

]
ds ,

where Ln〈µns , g〉2 =

∫

S2
dv
∑
x∈Ln

cn(x, σ ;v) 1
N2


g(x, v)2 −g(x, σ (x))2 +2g(x, v)

∑
y∈Ln,y �=x

g(y, σ (y))

−2g(x, σ (x))
∑

y∈Ln,y �=x
g(y, σ (y))


 .

Moreover,

2〈µns , g〉Ln〈µns , g〉 = 2
1
N

∑
x∈Ln

g(x, σ (x))

×
∫

S2
dv

∑
x∈Ln

cn(x, σ ;u) 1
N
(g(x, v)−g(x, σ (x))) .

Thus,

〈Mg,n
t 〉=

∫ t

0
ds

∫

S2
dv

∑
x∈Ln

cn(x, σ ;v) 1
N2 (g(x, v)−g(x, σ (x)))2 (45)
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and since (Mg,n
T )2 =Ng,n

T +〈Mg,n
T 〉, for g bounded we get that:

EQn(|MT |2)=EQn〈Mg,n
t 〉=O

(
1
N

)
.

By Kolmogorov’s generalized inequality and Doob’s maximal inequality
we have that for every ε >0 and for any time horizon T :

Qn

[
sup

0�t�T
|Mg,n

t |>ε
]

� 1
ε2

EQn

(
sup

0�t�T
|Mg,n

t |2
)

� 4
ε2

EQn(|MT |2)= 1
ε2
O

(
1
N

)
.

(46)

Now we are ready to proceed with the steps presented in [Ref. 33 Chapter
4] (all theorems, propositions etc. cited in the following proof refer there):

Step 1. (Relative compactness) We show that the sequence {Qn} is rel-
atively compact. By Proposition 1.7 it suffices to check that {Qng−1} is rel-
atively compact for all g∈C2(�×S

2) (since C2(�×S
2) is dense in C(�×

S
2)). To check it we need to apply Theorem 1.3 and Proposition 1.6 (for

the second condition of the theorem) with E =R and δ the usual distance
in R. Hence we need to check the following:

(i) ∀t ∈ [0, T ] and every ε >0, there is a compact K(t, ε)⊂R s.t.

sup
n
Qng−1 [R\K(t, ε)]≡ sup

n
Qn

[
µn : 〈µnt , g〉 /∈K(t, ε)

]
� ε

(ii) limγ→0 lim supn→∞ supτ∈TT ,θ�γ Q
n
[
µn :

∣∣〈µnτ+θ , g〉−〈µnτ , g〉
∣∣>ε]=

0,∀ε >0 , where TT is the family of all stopping times bounded by T .

Condition (i) is trivially verified, since 〈µnt ,1〉 � 1. For Condition (ii) we
have:

∣∣〈µnτ+θ , g〉−〈µnτ , g〉
∣∣�
∣∣∣∣
∫ τ+θ

τ

Ln〈µns , g〉ds
∣∣∣∣+
∣∣Mg,n

τ+θ −Mg,n
τ

∣∣=: I + II ,

where

I �
∫ τ+θ

τ

|Ln〈µns , g〉|ds�C(g)θ
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and C(g) is a finite constant depending only on g (or ‖g‖∞). For II by
(45) we have the estimate:

EQn

[(
M
g,n
τ+θ −Mg,n

τ

)2]=EQn

[∫ τ+θ

τ

B
g,n
s ds

]
� 1
N
C2(g)θ

From these two estimates and Kolmogorov’s generalized inequality we
conclude the proof of (ii) and of Step 1.

Step 2. (Uniqueness of the limit points) We characterize all limit
points of Qn in order to show that all limit points Q∗ are concentrated
on absolutely continuous (with respect to the Lebesgue measure) measures
whose density is a weak solution of the Eq. (40). Moreover, we will need
to prove a uniqueness theorem for the weak solutions of the Eq. (40). We
split the proof of Step 2 into the following:

(i) All limit points Q∗ of the sequence {Qn}n are concentrated on
weak solutions of Eq. (40).

(ii) All Q∗’s are concentrated on absolutely continuous measures with
respect to the Lebesgue.

We begin with the proof of (i): Let Q∗ be a limit point and let {Qnk } be
the subsequence of {Qn} converging to it. We want to show that for every
ε >0:

Q∗
{
µ : sup

t�T

∣∣∣∣〈µt , g〉−〈µ0, g〉−
∫ t

0
A(s) ds

∣∣∣∣>ε
}

=0 ,

where A(s) represents the terms in the curly brackets in the weak form of
Eq. (40), which is given by:

〈µt , g〉 = 〈µ0, g〉+
∫ t

0
ds

{∫

S2
du

∫

�×S2
g(y, u) S(v, u;y)µs(dy dv)

−
∫

S2
dv

∫

�×S2
g(y, u) S(u, v;y)µs(dy du)

}
, (47)

where S(u, v;y)=G [β ((u−v)J∗αt (σ ;y)+�(v)−�(u))] and αt (σ ;dy) :=∫
S2 v µt (dv dy) is the limit value (as n→ ∞) of αnt and corresponds to

the limit value µt of µnt . The convolution J∗αt is defined by: J∗αt (x) :=∫
�

J(x−y)αt (dy) . The mapping from D([0, T ],P) to R given by:

{µt ,0� t�T } → sup
t�T

∣∣∣∣〈µt , g〉−〈µ0, g〉−
∫ t

0
A(s) ds

∣∣∣∣
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is continuous whenever g ∈ C2(�× S
2). Therefore ∀ε>0 the set CT,ε :=

{µ : supt�T |〈µt , g〉 − 〈µ0, g〉 − ∫ t
0 A(s) ds|> ε} is open and by the “Port-

manteau” Theorem (see e.g. Ref. 34) since Qnk
∗
⇀ Q∗, we have that:

lim inf k→∞Qnk(CT,ε)�Q∗(CT,ε) . Hence it suffices to show that the left
hand side vanishes. We have:
∣∣∣∣〈µt , g〉−〈µ0, g〉−

∫ t

0
A(s) ds

∣∣∣∣ �
(∣∣〈µnt , g〉−〈µt , g〉

∣∣+ ∣∣〈µn0, g〉−〈µ0, g〉
∣∣)

+|Mg,n
t |+

∣∣∣∣
∫ t

0
An(s) ds−

∫ t

0
A(s) ds

∣∣∣∣
= : I1 + I2 + I3 ,

where An(s) includes the terms in the curly bracket in the martingale
problem (44). We calculate each term separately. For I1:

lim inf
k→∞

Qnk

{
µ : sup

t�T
I1>

ε

3

}
� lim
n→∞Q

n

{
µ : sup

t�T
I1>

ε

3

}
=0 .

For the martingale term I2 we use the estimate from before, i.e.:
Qn

{
sup0�t�T I2 � ε

3

}
� 1

ε2
1
N
C(g)T . So the last term to be controlled is

the difference An(s)−A(s), whose essential part is: Gn[u, v;y]µns (dy du)−
G[u, v;y]µs(dy du) . By adding and subtracting G[u, v;y]µns (dy du) it suf-
fices to estimate Gnµns −Gµns . But G and Gn are continuous functions of
their arguments and the total mass of µns is bounded by 1, so we get that:

∫

�×S2
g(y, u)

(
Gn[u, v;y]µns (dy du)−G[u, v;y]µs(dy du)

)=on(1) .

This completes the proof of (i).
Now for (ii) we have:

|〈µt , g〉|= lim
n→∞

∣∣〈µnt , g〉
∣∣� lim sup

n→∞
1
N

∑
y∈Ln

g(y, σnt (y))�
∫
g(y, u) dy du.

Thus, if we pick a set whose dydu measure is zero then the same will be
true for its measure with respect to µt . Moreover, we need to check that
all limit points of {Qn} are concentrated on trajectories that at t = 0 are
equal to f0(y, u)dydu, i.e., that for every ε >0:

Q∗
{∣∣∣∣〈µ0, g〉−

∫
f0(y, u)g(y, u) dy du

∣∣∣∣>ε
}

=0 ,
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which follows immediately by the weak convergence of Qnk to Q∗ and
by the hypothesis (39) of the theorem. This concludes the proof of (ii).
Before going to the next step we also need to show that for any T > 0
the weak form of Eq. (40) is also true for time-dependent test functions
g, which, given the above calculations, is straightforward by following the
corresponding strategy in Ref. 33.

Step 3. (Uniqueness of weak solutions of the Eq. (40)) Uniqueness of
solutions of Eq. (40) can be proved by the standard technique of the fixed
point theorem, since the right-hand side of (40) is Lipschitz continuous.

So far (Steps 1–3) we have shown that all limit points Q∗ of the
sequence Qn are concentrated on absolutely continuous measures with
respect to the Lebesgue measure. Hence we have shown that µnt (dx dv)

∗
⇀

f(x, v, t) dx dv. Considering now the case where J is smooth, symmetric
and with fast decay at infinity we have that αnt (dx)

∗
⇀m(x, t) dx which

implies that J ∗αnt (x)→ J ∗m(x, t) strongly. This is a result of long-range
interactions and smoothness of J. Basically the former is a crucial assump-
tion that allows us to close the equation. Moreover, G is continuous so by
letting n→∞ we get:

Gn[u, v;x]→G [β ((u−v) ·J∗m(x)+�(v)−�(u))]=:S(u, v;x) .

Hence for g ∈ C2(�× S
2) since µnt (dx dv)

∗
⇀f(x, v, t) dx dv we get the

convergence (as n→∞): 〈µnt , gGn〉→〈f, gS〉. By passing to the limit n→
∞ in (44) we get Eq. (40) in weak form.

We observe that due to the generality of equation (40) we cannot get
a closure in the first moment to obtain a closed equation for the magne-
tization m(x).

Example (Evolution of the magnetization). Under specific assump-
tions on the rate function (37) it is possible to obtain a closure for the first
moment of the PDF, i.e., m(x, t). In Ref. 36 the authors consider a contin-
uous scalar spin (σ(x)∈ [−b, b], x ∈Ln) lattice system and derive a kinetic
equation for the PDF together with a closed equation for the magnetiza-
tion (the first moment of f ). The main difference is the special choice of
the rate function which is given by:

cn(x, v;σ)= eβvJ∗αn(x)+on(1) . (48)

We see that this is not a choice of Glauber or Metropolis type as in Sec-
tion 3.1. The lower order terms in (48) are necessary in order the DB
condition to be satisfied. The leading part of the exponent in (48) allows
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us to close the derived kinetic Eq. (40) in the first moment and obtain
an equation for the magnetization m(x, t) as n→ ∞. Recalling Eq. (40),
we first rephrase it to be consistent with the setup of Ref. 36. To start
with, we first include the anisotropy into the prior distribution measure so
that instead of the uniform measure on S2 we now have the anisotropic
ρ̃(dv)=N(v)dv where N(v) is given by (29). Then, using the same nota-
tion f , we now consider as f the Radon–Nikodym derivative of the initial
PDF with respect to the measure ρ̃(dv). Hence the new Maxwellian solu-
tion will be:

M(x, v, t)= 1
Zβ(x, t)

eβv·J∗m(x,t), Zβ(x, t)=
∫

S2
eβv·J∗m(x,t)ρ̃(dv) .

Then applying the special choice of the rate (48) in our problem we get
the following equation (in a BGK form) for the new probability density
function f (x, v, t):

d

dt
f v = exp

{
βaβ(J∗m)} (Mv −f v) , (49)

where the function aβ is given by (27). Note that for the sake of simplic-
ity we have used the notation: f u :=f (x, u, t) and Mu :=M(x,u, t). More-
over, because of this choice we can also obtain a closed equation for the
first moment of f , i.e., for the magnetization m(x, t):

d

dt
m= exp{βaβ(J∗m)} [∂ aβ(J∗m)−m] . (50)

Observe that (50) can be viewed as generalization of the usual equation
that appears in the Ising case (see for instance(7)). We can also see that, if
we neglect the micromagnetic contribution, the free energy (24) is in fact
a Liapunov functional.

3.1.2. Relaxation to the Equilibrium

In Section 2.2 we have derived from statistical mechanics consider-
ations the energy of the system given by (16). Moreover, we have seen
that the energetically most favorable configuration describing the large-
scale features on Ln≈� is given by the Maxwellian distribution (28) with-
out the dipolar term, yielding the probability of having a spin v∈S2 at the
location x∈�. In this section we study the long-time behavior of the solu-
tion f (x, v, t) of the Eq. (40) and we want to show that f relaxes to the
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local Maxwellian. Note that M depends on t through the average magne-
tization m. But m, in turn, seems to relaxe to m̄(x) which is the minimizer
of the free energy functional (24) derived in Theorem 2.3. Our ultimate
goal is to show the convergence f →M̄ in some appropriate norm, where
by M̄ we denote the Maxwellian that corresponds to the time-independent
magnetization m̄. In this context, we derive the corresponding H -Theo-
rem (where we use the notation S(u, v;m) instead of S(u, v;x) in order to
emphasize the dependence on m(x)):

d

dt
E[f ]= 1

β

∫

�

dx

∫

S2

∫

S2
dudv S(v, u;m)Mv

[
f u

Mu
− f v

Mv

]
log

f v

Mv
.

Then, applying a change of variable together with the DB condition (42)
we have that:

d

dt
E[f ]=−I (f |M), (51)

where:

I (f |M) = 1
2β

∫

�

dx

∫

S2×S2
dudv S(v, u;m)Mv

×
[
f u

Mu
− f v

Mv

][
log

f u

Mu
− log

f v

Mv

]
.

Since S(v, u;m)Mv is positive and the function g(x)= (x − 1) log x non-
negative with g(x)= 0 iff x = 1, we have that I (f |M)� 0 with “=” iff
f ≡M.

Moreover, recalling from Theorem 2.3 that E[f ] is bounded from
below by E[M̄] and given the above fact that it decreases unless f is a
Maxwellian, it is tempting to conclude that f tends to M̄ when t → ∞.
Furthermore, we have the following formula:

E[f ]−E[M̄]= 1
β
e(f |M̄)− 1

2

∫

�

J∗ (m− m̄)(m− m̄) dx ,

where:

e(f |M̄)=
∫

�×S2
f log

f

M̄
dx dv (52)

is the physical relative entropy. The above formula suggests a connection
between the convergence in the relative entropy, the convergence of E[f ]
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to E[M̄] and of m to m̄ (or equivalently of f to M̄). In the following
example we show this convergence in a very simple case, which is the
equation without interactions (i.e. J≡0). Although this seems to be a triv-
ial example from the physics point of view, it highlights the difficulty intro-
duced to the problem by the continuous vectorial spins.

Example (Special case J≡0). We have the equation:

d

dt
f (v)=

∫

S2
S(v, u)M(v)

(
f (u)

M(u)
− f (v)

M(v)

)
du . (53)

We notice that since J = 0 the expression (53) is x-independent. In this
case M(v) = exp{−βaβ(0) − β�(v)} , where aβ(0) = 1

β
log

∫
S2 e−β�(v) dv

and S(v, u)=G(β�(u)−β�(v)).
We want to show that f →M as t → ∞ in the L1-norm. We will

prove first something stronger, ‖f −M‖L2(M−1(v)dv) → 0, which is equiva-
lent to proving

∣∣∣∣ f
M

− 1
∣∣∣∣
L2(M(v)dv)

→ 0. We let h := f
M

and we study the
following linear integro-differential equation in the space L2(M(v)dv):

d

dt
h(v)=

∫

S2
S(v, u) (h(u)−h(v)) du =: (Lh)(v) . (54)

We have the following:

Proposition 3.1. (i) The spectrum �(L)=�d ∪�c of the operator L
consists of a discrete �d ⊂ (−ν0,0] and an essential part �c= (−∞,−ν0],
where ν0 is a positive constant. (ii) The solution h of Eq. (54) decays expo-
nentially fast in time to the constant solution 1.

Proof. We can easily check that the operator L on L2(M(v)dv) is
linear, bounded, symmetric and negative semidefinite. For the later we
have:

〈h,Lh〉L2(M(v)dv)=−1
2

∫

S2×S2
S(v, u)M(v)(h(u)−h(v))2 dudv�0 , (55)

being zero iff h(u)= h(v)= const., which implies that ker(L)= span{1}.
Moreover, L has the decomposition L = K − ν(v) Id , where (Kh)(v) =∫

S2S(v, u)h(u) du is a compact operator (Hilbert–Schmidt operator in
L2(M(v)dv,S2)). The function ν(v) = ∫

S2S(v, u) du satisfies the bounds
0<ν0 � ν(v)� ν1(v) for some ν0 and ν1(v) which depend on the specific
choice of the function G(r) and can be calculated explicitly in each case.
Given these properties (i) follows by applying Theorem IV.5.35 in Ref. 37.
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(ii) By (i) we have the following spectral gap property:

〈g,Lg〉L2(M(v)dv)�−α‖g‖2
L2(M(v)dv)

, (56)

for some α such that 0<α<ν0 and for every g with g⊥L2(M(v)dv)const.
Note that h−1 has this property since:

∫
S2 f (v) dv=∫

S2 M(v)dv=1 if and

only if
∫

S2

(
f (v)
M(v)

−1
)
M(v)dv=0. Thus, from (56) we get:

1
2
d

dt
‖h−1‖2

L2(M(v)dv)
� −α‖h−1‖2

L2(M(v)dv)
⇒

‖h−1‖L2(M(v)dv)� e−αt‖h0 −1‖L2(M(v)dv) .

Remark 3.2. From [Ref. 38 Lemma 2.6] we see that the convergence
in L2(M(v)dv) for h= f

M
to the constant 1 implies convergence in the rel-

ative entropy (52) which in turn implies convergence in the L1-norm, by
applying the Csiszár–Kullback inequality.

3.2. Relaxation Langevin Dynamics

We analyze a microscopic stochastic model where the change of spin
is not given by a spontaneous jump from one value to another (leading
to a stochastic jump process), but it is dictated by the Langevin dynam-
ics which are described by a Stochastic Differential Equation (SDE) of the
form:

dθi =−δHN
δθi

dt+ τdWi, i=0, . . . ,N −1 (57)

where θi ∈ [0,2π) is the angle of the i-th spin, which now takes values on
S1, on the periodic lattice LN that for simplicity we consider to be one-
dimensional (i.e. N =n and LN ={ i

N
; i= 0, . . . ,N − 1}).HN is the interac-

tion Hamiltonian (7) which in the set-up of this section will be given by:

HN(σ)=− 1
2N

N−1∑
j,k=0

J(j −k) cos(θj − θk)+
N−1∑
j=0

�(θj ) ,

where � is the anisotropy function � : [0,2π) → R and τ is a scalar
depending on the inverse temperature β. We also denote by
W = (W 0, . . . ,WN−1) the standard N -dimensional Wiener process. This
SDE is defined by a generator through the usual martingale problem (see
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Ref. 39), so the fact that θi ∈ [0,2π) is ensured. Note also that in this sec-
tion we are assuming the spins to be on the unit circle rather than the unit
sphere. We calculate:

δHN

δθk
= 1
N

N−1∑
j=0, j �=k

J(j −k) sin(θk − θj )+ ∂

∂θk
�(θk), k=0, . . . ,N −1 ,

where J(r) = J(|r|), r ∈ R. We consider as our observable the usual
empirical measure: µNt (dx dθ)= 1

N

∑N−1
i=0 δ i

N
(dx)δθi (t)(dθ) , where dθ is the

Lebesgue measure on [0,2π). If φ is an appropriate test function, we have:

〈µNt , φ〉= 1
N

N−1∑
i=0

φ

(
i

N
, θi(t)

)
.

We want to derive a closed equation for the quantity 〈µNt , φ〉. Using Itô’s
formula from (57) we obtain:

d

dt
〈µNt , φ〉 = − 1

N

N−1∑
i=0

∂φ( i
N
, θi)

∂θi

1
N

∑
j �=i

J

(
i

N
− j

N

)
sin(θi − θj )

+ 1
2N

N−1∑
i=0

τ 2 ∂
2φ( i

N
, θi)

∂θ2
i

− 1
N

N−1∑
i=0

∂φ( i
N
, θi)

∂θi

∂�(θi)

∂θi

+ 1
N

N−1∑
i=0

∂φ( i
N
, θi)

∂θi

dWi

dt
=: I1 + I2 + I3 + I4 . (58)

Now we derive an equation for the limit of the empirical measure by cal-
culating the mesoscopic limit of (58). We have the theorem:

Theorem 3.2. Let f0 :�× [0,2π)→ [0,1] be an initial density pro-
file, with �≡ [0,1), and let µN0 be a sequence of probability measures on
the configuration space [0,2π)LN , associated to the initial profile f0, in the
following sense:

lim sup
N→∞

µN0

{∣∣∣∣∣
1
N

N−1∑
i=0

φ

(
i

N
, θi

)
−
∫
φ(x, θ) f0(x, θ) dx dθ

∣∣∣∣∣>δ
}

=0 , (59)
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for every continuous function φ :�× [0,2π)→ R and every δ > 0. Then
the sequence of measure valued processes {µNt }N defined above is tight
and any limit µt is a continuous probability measure-valued process abso-
lutely continuous with respect to the Lebesgue measure dx dθ , whose den-
sity f (x, θ, t) satisfies the following equation:

∂

∂t
f = ∂θ (f (∂θK)∗f )+ ∂θ (f ∂θ�(θ))+ 1

2
τ 2∂2

θθf

= ∂θ (f ∂θ (K ∗x,θ f + 1
β

logf +�)) , (60)

with the initial condition f (x, θ,0)= f0(x, θ). Moreover, the kernel K is
given by

K(x−x′, θ − θ ′)=J(x−x′) cos(θ − θ ′) (61)

and therefore, (∂θK)∗µ(x, θ) :=− ∫∫ J(x−x′) sin(θ − θ ′)µ(dx′, dθ ′) .

Proof. Given the fact that the spins are on the lattice, the proof fol-
lows the lines of the proof of Theorem 3.1. We need to prove the conver-
gence in law of the corresponding probability measure QN on the path
space D([0, T ],P) (see the proof of Theorem 3.1) by showing tightness,
identification of the limit values, uniqueness of the limit value. In order
not to repeat the proof we just present the main calculations. We write the
right-hand side of (58) in terms of 〈µNt , φ〉:

I1 = − 1
N

N−1∑
i=0

∂φ( i
N
, θi)

∂θi

∫ ∫
J

(
y− i

N

)
sin(θi − θ ′)

1
N

N−1∑
j=0

δ j
N

(dy)δθj (t)(dθ
′)

= − 1
N

N−1∑
i=0

∂φ( i
N
, θi)

∂θi
(∂θK)∗µN

(
i

N
, θi, t

)

= −
∫ ∫

∂φ(x, θ)

∂θ
K ∗µN(x, θ, t) 1

N

N−1∑
i=0

δ i
N
(dx)δθi (dθ)=−

〈
∂φ

∂θ
K ∗µN,µN

〉
.

Similarly, I2 = 〈µN, τ 2tr(∇2φ)〉 and I3 = −〈 ∂φ
∂θ
∂θ�,µ

N 〉. Hence (58) will
give the following formulation of the martingale problem:

〈µNt , φ〉−〈µN0 , φ〉=
∫ t

0
AN 〈µNs ,φ〉ds+MN,φ

t , (62)

where AN is the generator of the Markov process {µNt } suggested by

(58), and MN,φ
t = 1

N

∑N−1
i=0 τ

∫ t
0
∂φ( i

N
,θi )

∂θi

dWi

ds
ds is the martingale term. Since
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{Wi}N−1
i=0 are independent Wiener processes it is easy to show that the qua-

dratic variation of MN,φ
t is given by:

〈MN,φ
t 〉= 1

N2

N−1∑
i=0

τ 2

(
∂φ( i

N
, θi)

∂θi

)2

and therefore, EQN 〈MN,φ
t 〉=O( 1

N
), since φ is bounded. From this estimate

we can show tightness and therefore convergence up to a subsequence. To
complete the proof we need to show uniqueness of the limit point µ of
the solution of the weak version of Eq. (60). This follows from a simi-
lar result in Ref. 40. Moreover, we can show that all limit points of the
sequence of the measures QN on the path space are supported on mea-
sures µt which are absolutely continuous with respect to the Lebesgue
measure f (x, θ, t) dx dθ . Then the probability density function f satisfies
the nonlinear Fokker–Planck Eq. (60).

The Eq. (60) can be interpreted as a gradient flow: “ d
dt
f =−∇F(f )”.

By ∇ we represent the gradient which is a tangent vector field on the
space of probability density functions f and F(f ) is the corresponding
free energy of the system, given by:

F [f ] = 1
β

∫
f logf dx dθ +

∫
�(θ)f dx dθ

+1
2

∫
K(x−x′, θ − θ ′)f (x, θ)f (x′, θ ′)dx dx′ dθ dθ ′. (63)

Equation (60) can be written as:

d

dt
f =−∂θ

(
f ∂θ

(
−δF
δf

))
.

Then we see that F decays along f (t) (H -Theorem for Eq. (60)):

d

dt
F(f (t)) =

∫
δF
δf

(
df

dt

)
dx dθ = 1

β

∫
δF
δf

∂θ

(
f ∂θ

(
δF
δf

))
dx dθ

=− 1
β

∫
f

∣∣∣∣∂θ
(
δF
δf

)∣∣∣∣
2

dx dθ �0 , (64)
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with “=” iff δF
δf

= const in θ . Hence for the equilibrium solutions we have:
K ∗x,θ f + 1

β
logf +�= c(x), where

K ∗x,θ f (x, θ)=−
(

cos θ
sin θ

)
·J∗x m(x)=−

(
cos θ
sin θ

)
·
∫

J(x−y)m(y)dy .
(65)

Thus,

M̄(x, θ) = 1
Z(x)

exp
{
−β�(θ)+β

(
cos θ
sin θ

)
·J∗ m̄(x)

}
(66)

m̄(x) =
∫ 2π

0

(
cos θ
sin θ

)
M̄(x, θ) dθ (67)

which is the steady state solution of Eq. (60).
Next we study the asymptotic behavior of solutions to the Eq. (60).

We observe that neither � nor K are convex functions of the variable
θ . Furthermore, the x, θ -convolution K ∗ f is merely a convolution with
respect to the x-variable only, as can be seen in (65). Hence, in our case,
the terms involving � and J will be treated as L∞ perturbations of a
strictly convex potential and subsequently we derive an exponential decay
for an appropriate relative entropy functional.

The strategy to show relaxation to equilibrium is similar to the one
presented in Ref. 38 for the drift-diffusion-Poisson model. Note also that
we get this decay for the case where the mapping u →〈J∗u, u〉 is negative
definite. We return to this assumption in Remark 3.3 below. We start by
defining a t-local state:

M(x, θ, t)= 1
Z(x, t)

exp
{
−β�(θ)+β

(
cos θ
sin θ

)
·J∗x m(x, t)

}
, (68)

where

Z(x, t)=
∫ 2π

0
exp{−β�(θ)+β

(
cos θ
sin θ

)
·J∗x m(x, t)}dθ .

Then the equation has the BGK form:

∂

∂t
f = ∂θ

(
f ∂θ

(
1
β

log
f

M

))
= 1
β
∂θ

(
M∂θ

(
f

M

))
.
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Moreover, by the H -Theorem we have (at least formally):

d

dt
F(f (t))=− 1

β

∫ ∫
f

∣∣∣∣∂θ
(

log
f

M

)∣∣∣∣
2

dx dθ .

For any fixed x ∈�, if M were of the form M(θ)= e−βV (θ), with V

strictly convex (say ∂2
θ V �λ1, for some positive constant λ1), then we have

the logarithmic-Sobolev inequality:

∫
f log

f

M
dθ � 1

2λ1

∫
f

∣∣∣∣∂θ
(

log
f

M

)∣∣∣∣
2

dθ . (69)

Nevertheless this can still be done for M as in (68) since by the pertur-
bation Theorem 3.2 in Ref. 38 we can express the exponent of M as a
bounded perturbation of a strictly convex function V (which is the sric-
tly convex version of the convex envelope of �), chosen in the process of
the proof. Then, we need to control the difference between the exponent
V (θ) and the exponent of M. Note that (68) can be written in the form:

M(x, θ, t)= exp
{
−β�(θ)+β

(
cos θ
sin θ

)
·J∗x m(x, t)−βaβ(J∗x m(x, t))

}
,

where

aβ(p)= 1
β

log
∫ 2π

0
exp

{
β

(
cos θ
sin θ

)
·p−β�(θ)

}
dθ ,

for p∈R
2, as in (27). Then we want to estimate the difference between the

two exponents. We define:

v(x, θ, t) :=V (θ)−
(
�(θ)−

(
cos θ
sin θ

)
·J∗x m(x, t)+aβ(J∗x m(x, t))

)
.

It is easy to check that there are positive constants k1, k2 and k3 such that:

∣∣∣∣
(

cos θ
sin θ

)
·J∗x m(x, t)

∣∣∣∣� |J∗m(x, t)|�k1, ∀x, θ, t

(since ‖m(t, ·)‖∞ is uniformly bounded in t and J is smooth) which in turn
implies that |aβ(J∗x m(x, t))|�k2. Moreover, 0��(θ)−V (θ)�k3 . Thus,

0<e−k1−k2 � e−v(x,θ,t)� ek1+k2+k3 <∞, ∀x, θ, t .
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Hence, by Theorem 3.2 in Ref. 38 we have the same logarithmic-Sobolev
inequality (69) for M given by (68), with a new coefficient c > 0 depend-
ing on λ1, k1, k2, k3 and the fixed x. But, since � is compact, we can find
another constant c (independent of x) for which:

∫ ∫
f log

f

M
dx dθ � c

∫ ∫
f

∣∣∣∣∂θ
(

log
f

M

)∣∣∣∣
2

dx dθ .

We define now the appropriate relative entropy functional for which we
will show the exponential decay. We have:

eβ(t) :=F(f (t))−F(M̄) , (70)

from which, after a simple calculation, we obtain:

eβ(t)= 1
β

∫ ∫
f log

f

M̄
dx dθ − 1

2

∫
J∗ (m− m̄) · (m− m̄) dx .

Our goal is to show exponential decay for the quantity eβ(t). We have:

d

dt
eβ(t) = d

dt
F(f (t))=− 1

β

∫ ∫
f

∣∣∣∣∂θ
(

log
f

M

)∣∣∣∣
2

dx dθ

� −c 1
β

∫ ∫
f log

f

M
dx dθ

= −c 1
β

∫ ∫
f log

f

M̄
dx dθ − c 1

β

∫ ∫
f log

M̄

M
dx dθ . (71)

Thus, after using Jensen’s inequality for the second term of the right hand
side of (71), we have:

d

dt
eβ(t)�−c 1

β

∫ ∫
f log

f

M̄
dx dθ + c

∫
J∗ (m− m̄) · (m− m̄) dx .

Note that if the second term is negative, i.e. the quadratic form u → 〈J ∗
u, u〉 is negative definite in L2(�), then we can bound it and get the
desired right-hand side. Thus we conclude the exponential decay of the
appropriate relative entropy functional eβ(t):

d

dt
eβ(t)� e−ct eβ(0) , (72)
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where eβ(0)= 1
β

∫∫
f0 log f0

M̄
dx dθ − 1

2

∫
J ∗ (m0 − m̄) · (m0 − m̄) dx with f0 ∈

L1+(�× [0,2π)) the initial condition and m0 the corresponding to f0 mean
magnetization. In fact we have proved the theorem:

Theorem 3.3. Let f0 ∈L1+(�× [0,2π)). Suppose also that the quad-
ratic form u → 〈J∗u, u〉 is negative definite in L2(�). Then there exists a
positive constant c such that the exponential convergence (72) of the rel-
ative entropy functional (70) holds for a solution of the Eq. (60).

Remark 3.3. The relative entropy type estimates prove a global
relaxation to equilibrium. In Section 2.5 we have seen that for the fer-
romagnetic case we have multiple steady state solutions as well as corre-
sponding multiple standing waves (out-plane waves and their symmetric
counterpart in Fig. 2) for the energy functional. Consequently, we cannot
expect such an estimate since this would mean that with an initial condi-
tion close to one minimizer of the energy functional the solution could
relaxe to another minimizer, which is impossible. Therefore one should
expect that only when a unique equilibrium measure exists such global
estimates can be derived.

Remark 3.4. The same method and for the same relative entropy
functional eβ can be applied to get exponential convergence for the solu-
tions of the Eq. (49). But again, for the same reason as above we have to
assume that the quadratic form u → 〈J∗u, u〉 is negative definite.

4. CONCLUSIONS

In this paper we have derived a deterministic mesoscopic theory for
model continuous spin lattice systems both at equilibrium and non-equi-
librium in the presence of thermal fluctuations. The full magnetic Hamil-
tonian that includes singular integral (dipolar) interactions has also been
considered in the analysis of equilibrium. The non-equilibrium micro-
scopic models we considered are relaxation-type dynamics arising in
kinetic Monte Carlo or Langevin-type simulations of lattice systems. In
this context we employed the mesoscopic models derived here to study
the relaxation of such algorithms to equilibrium. Furthermore, such mod-
els provide a first step towards the construction of coarse-grained Monte
Carlo algorithms for continuum spin systems, in the spirit of earlier
work(41,30) for Ising type systems.
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40. E. Cépa and D. Lépingle, Diffusing particles with electrostatic repulsion. Prob. Theory
Relat. Fields 107:429–449 (1997).

41. M. Katsoulakis, A. Majda, and D. Vlachos, Coarse-grained stochastic processes for
microscopic lattice systems, Proc Natl. Acad. Sci, 100(3):782 (2003).


